substitutents on conductance and other physical properties of 1 as well as 2.
(9) Department of Biophysics, State University of New York at Buffalo.

Fred Wudl,* Darold Wobschall, ${ }^{9}$ Earl J. Hufnagel
Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214
Received September 27, 1971

Steric Driving Forces in Perester Decomposition. tert-Butylperoxy Di-tert-butylacetate ${ }^{1}$

Sir:
The question of concerted cleavage of both $\mathrm{O}-\mathrm{O}$ and $\mathrm{C}-\mathrm{CO}_{2}$ bonds during the thermal reactions of tert-butyl peresters has been of considerable interest. This problem has been examined recently by the study of the effect of solvent viscosity, ${ }^{2}$ secondary isotope effects, ${ }^{3}$ bridgehead strain, ${ }^{4}$ and pressure ${ }^{5}$ on the rates and products of perester decomposition. ${ }^{6}$

This report presents a new approach for investigating transition-state structure in perester decompositions, the steric driving force for the reaction. This method has been utilized to great advantage for the study of ionization processes; ${ }^{7}$ for example, the relative rates of solvolysis (eq 1) of di-tert-butylcarbinyl tosylate (1a) and

$$
\begin{equation*}
\underset{\substack{\mathrm{R}_{2} \mathrm{CHOTs}}}{\left[\mathrm{R}_{2} \mathrm{CH} \cdots \mathrm{OTs}\right]^{*} \xrightarrow{-\mathrm{OTs}} \mathrm{R}_{2} \mathrm{C}^{+} \mathrm{H}} \tag{1}
\end{equation*}
$$

isopropyl tosylate (1b) have been measured to be 630 in 97% trifluoroethanol, and calculated to be 120,000 in trifluoroacetic acid. ${ }^{7 \mathrm{~b}}$ This rate acceleration was ascribed largely to relief of steric strain for 1 a on ionization, with a possible additional contribution from methyl participation.

To examine the occurrence of steric acceleration in perester reactions we prepared tert-butylperoxy di-tertbutylacetate (2a). Reaction of di-tert-butylacetyl chloride ${ }^{8}$ with t - BuOOH -pyridine gave 2 a as a pale yellow oil: ir (cumene) $1764 \mathrm{~cm}^{-1}(\mathrm{C=}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.10$ $\left(\mathrm{s}, 18, \mathrm{CH}-t-B u_{2}\right), 1.28(\mathrm{~s}, 9, O-t-\mathrm{Bu})$, and $1.97(\mathrm{~s}, 1$, $C H-t-\mathrm{Bu}) .{ }^{9}$ The kinetics of thermal decomposition of 2a were examined in cumene solution and the measured rate constants are given in Table I along with suitable data for comparison. ${ }^{10}$ The products of the reaction at 70° are given in Table II.
(1) Supported by the U. S. Army Research Office-Durham. Part V in the series "Steric Crowding in Organic Chemistry"; part IV: G. J. Abruscato, R. G. Binder, and T. T. Tidwell, J. Org. Chem., submitted for publication.
(2) W. A. Pryor and K. Smith, J. Amer. Chem. Soc., 92, 5403 (1970).
(3) T. Koenig, J. Huntington, and R. Cruthoff, ibid., 92, 5413 (1970).
(4) (a) R. C. Fort, Jr., and R. E. Franklin, ibid., 90, 5267 (1968); (b) J. P. Lorand, S. D. Chodroff, and R. W. Wallace, ibid., 90, 5266 (1968); (c) L. B. Humphrey, B. Hodgson, and R. E. Pincock, Can. J. Chem., 46, 3099 (1968); (d) G. A. Razuvajev, L. S. Boguslavskaya, V. S. Etlis, and G. V. Brovkina, Tetrahedron, 25, 4925 (1969); (e) S. F. Nelsen and E. F. Travecedo, J. Org. Chem., 34, 3651 (1969).
(5) R. C. Neuman, Jr., and J. V. Behar, ibid., 36, 54, 57 (1971).
(6) For a general review of the relation between perester structure and reactivity, see C. Riichardt, Angew. Chem., Int. Ed. Engl., 9, 830 (1970).
(7) (a) P. D. Bartlett and T. T. Tidwell, J. Amer. Chem. Soc., 90 , 4421 (1968); (b) S. H. Liggero, J. J. Harper, P. v. R. Schleyer, A. P. Krapcho, and D. E. Horn, ibid., 92, 3789 (1970).
(8) M. S. Newman, A. Arkell, and T. Fukunaga, ibid., 82, 2498 (1960).
(9) Satisfactory carbon and hydrogen analyses were obtained for $2 \mathbf{a}$. (10) P. D. Bartlett and L. B. Gortler, J. Amer. Chem. Soc., 85, 1864 (1963).

Table I. Rates of Decomposition of tert-Butylperoxy Di-tert-butylacetate (2a) in Cumene ${ }^{a}$

Per- ester	Temp, ${ }^{\circ} \mathrm{C}$	$k_{\mathrm{l}}\left(\mathrm{sec}^{-1}\right)$ 10^{6}	$k_{\text {rel }}$	ΔH^{*}, $\mathrm{kcal} / \mathrm{mol}$	ΔS^{*}, eu
$\mathbf{2 a}$	85.4	24.4		29.9	7.9
	70.2	3.56			
	54.7	0.438			
	90.6^{b}	44.6	6.7		
$\mathbf{2 b}^{c}$	60.0^{b}	0.915		1.0	31.8
	60.6	6.67	9.0^{b}	0.106	

${ }^{a}$ Rates were measured by the infrared method using 0.09 M solutions, and the reported values are the averages of two runs at each temperature. Excellent first-order rate plots were obtained for at least two half-lives, and duplicate runs agreed within less than $\pm 2 \%$ in all cases. ${ }^{b}$ Calculated from data at other temperatures. ${ }^{c}$ Reference 10 .

Table II. Products of Decomposition of tert-Butylperoxy Di-tert-butylacetate (2a) at 70° in Cumene ${ }^{a}$

Product	$\mathrm{Mol} / \mathrm{mol}$ of perester	Product	$\mathrm{Mol} / \mathrm{mol}$ of perester
CO_{2}	0.89	t - BuOH_{4}	0.84
CH_{4}	0.01	$t-\mathrm{Bu}_{2} \mathrm{CH}_{2}$	0.74^{b}
		Acetone	0.17

${ }^{a}$ Determined using $0.4 M$ solutions. ${ }^{b}$ Products derived from combination of $t-\mathrm{Bu}_{2} \mathrm{CH}$ groups with solvent were also detected.

The similarity in reactivity of $\mathbf{2 a}$ and $\mathbf{2 b}$ indicates that both of these peresters are reacting by the same mechanism, and a concerted two-bond cleavage (eq 2) is most

$\mathrm{R}_{2} \mathrm{CH}$
consistent with the observed results. ${ }^{6,11}$ The most telling piece of evidence for the concerted cleavage is the 50 -fold greater rate of reaction of tert-butylperoxy isobutyrate (2b) over tert-butylperoxy acetate. ${ }^{10,11 a}$

The remarkable feature of the reactivity of the di-tertbutylperacetate $2 a$ is the small rate enhancement (a factor of 6.7 at 90.6°) relative to the dimethylperacetate $\mathbf{2 b}$. The corresponding factor for trifluoroacetolysis of the structurally related tosylates was 120,000 . This latter comparison was made under conditions where backside solvent participation, which accelerates the reactivity of the less highly substituted derivatives, is minimized, but backside solvent displacement could not be involved in the perester reactions. Steric repulsion of the leaving group may also be a factor in cleavage reactions of highly substituted substrates, and while the relative magnitudes of this interaction are difficult to assess, it appears the potential relief of strain from this cause is at least as great in the perester system. Furthermore inductive acceleration of the rate of 2 a could account for a major fraction of the $\mathbf{2 a} / \mathbf{2 b}$ rate ratio. ${ }^{4 \mathrm{a}}$. Thus the rate acceleration due to relief of steric strain in the dialkylperacetates is remarkably small. This result strongly suggests that rather little rehybridization of the carbon bonded to the carboxy group occurs in the transition state of perester decompositions leading to secondary radicals, and is in accord with the description of the
(11) (a) P. D. Bartlett and R. R. Hiatt, ibid., 80, 1398 (1958); (b) L. A. Singer in "Organic Peroxides," Vol. 1, D. Swern, Ed., Wiley, New York, N. Y., 1970.
transition state which has been developed on the basis of the other investigations mentioned above. ${ }^{3-6}$ The proposal ${ }^{6,12}$ that relief of steric crowding is an important factor in perester decompositions evidently is not applicable in these cases. ${ }^{13}$
(12) C. Ruichardt and I. Mayer-Ruthardt, Chem. Ber., 104, 593 (1971).
(13) Professor Ch. Ruichardt has also observed onty minimal steric acceleration in decomposition of certain peresters and azo compounds leading to radicals (unpublished results privately communicated).

Gerald J. Abruscato, Thomas T. Tidwell*
Department of Chemistry, University of South Carolina Columbia, South Carolina 29208 Received October 22, 1971

Stereochemistry of Phenylpalladation of Cyclohexene ${ }^{1}$

Sir:
The oxidation of cyclohexene-3,3,6,6- d_{4} by a mixture of PdCl_{2} and CuCl_{2} in acetic acid was previously reported ${ }^{2}$ to give products which were consistent with trans acetoxypalladation followed by cis palladium(II) hydride (or deuteride) eliminations and readditions. Thus the structure of the homoallylic acetate formed can be explained by Scheme I. 1 was also formed by
Scheme I

the oxidation of cyclohexene-3,3,6,6- d_{4} with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid. ${ }^{3}$

Although Scheme I is believed to be most consistent with known palladium(II) chemistry, there are other mechanistic paths which will give 1 as product. Cis acetoxypalladation and trans palladium(II) hydride (or deuteride) elimination and readdition is one possibility. This route is considered very unlikely because it would require free hydride to exist in a protonic solvent such as acetic acid. Another possibility is cis acetoxypalladation followed by 1,2 shifts of hydrogen

[^0](or deuterium) and $\mathrm{Pd}(\mathrm{II})$ by concerted diaxial \rightleftarrows diequatorial type shifts. ${ }^{3}$

One way to test Scheme I is to use a reagent that will add cis to cyclohexene. If homoallylic product arises from cis palladium hydride (or deuteride) eliminations and readditions as shown in Scheme I, the arrangement of protons in the homoallylic product will be different from that found in 1. Such a reagent is apparently phenylpalladium. Reaction of olefins with this reagent, formed in situ by the exchange of arylmercury(II) compounds with palladium(II) salts, has been studied extensively, ${ }^{4}$ and stereochemical results indicate that phenylpalladation and palladium(II) hydride elimination have the same stereochemistry. ${ }^{5}$ Since the phenyl is covalently bonded to palladium(II), phenylpalladation would be expected to be a cis process. For that reason the oxidation of cyclohexene and its deuterated analog by mixtures of phenylmercuric acetate and $\mathrm{Pd}(\mathrm{II})$ salts was studied.

The oxidation with PhHgOAc and either $\mathrm{Pd}(\mathrm{OAc})_{2}$ or catalytic amounts of PdCl_{2} plus CuCl_{2} gave two main products by vapor phase chromatography (vpc). ${ }^{6}$ Each peak was collected by preparative vpc and identified by nmr. The spectra indicated both were phenylsubstituted cyclohexenes, ${ }^{7}$ one the allylic isomer and the other the homoallylic isomer. The reaction thus proceeds as shown by eq 1 . The first peak to elute,

which was about one-half the area of the second peak, was assigned the structure 2 on the basis of the chemical shifts of the H_{1} protons. Thus in $3, \delta_{1}$ is at 2.78 ppm , while in 2 it is shifted to 3.41 ppm . Such a shift is expected when the double bond is moved closer to H_{1}. Furthermore in 3 the olefinic protons are unresolved at approximately $\delta 5.76 \mathrm{ppm}$, using a $60-\mathrm{MHz}$ spectrometer. When the double bond is moved closer to the phenyl, they are resolved with $\delta_{2} \sim 5.7 \mathrm{ppm}$ and δ_{3} $\sim 5.9 \mathrm{ppm}$. Aromatic protons appear as a sharp singlet at $\delta 7.25 \mathrm{ppm}$ in both isomers.

The $\mathrm{Pd}(\mathrm{OAc})_{2}$ run was repeated using cyclohexene-$3,3,6,6-d_{4}$, and the products were again collected by preparative vpc and their nmr spectra taken. On the basis of the chemical shifts and area measurements the products were assigned structures 4 and 5 . In $4, \mathrm{H}_{1}$
(4) R. F. Heck, ibid., 90, 5518 (1968), and following papers.
(5) R. F. Heck, ibid., 91, 6707 (1969).
(6) All runs were made at 25°. $\operatorname{Pd}(\mathrm{OAc})$: reaction mixtures contained 0.2 mol of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PhHgOAc}$, and cyclohexene per liter of acetic acid. The PdCl_{2} runs contained 0.01 mol of $\mathrm{PdCl}_{2}, 0.2 \mathrm{~mol}$ of PhHgOAc and cyclohexene, and 0.4 mol of CuCl_{2} per liter of acetic acid. All reactants except the $\operatorname{Pd}(\mathbf{I I})$ salts were mixed and stirring begun. The reaction was then started by adding the $\mathrm{Pd}(\mathrm{II})$ salts. Since the salts were sparingly soluble in acetic acid all runs were heterogeneous. Reaction time was 2 hr . Conversion of cyclohexene was about 50%. Reaction mixtures were worked up by diluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washing with water to remove inorganic salts and acetic acid. After drying, the organic phase was concentrated to a known volume and analyzed by vpc. A $20-\mathrm{ft} 20 \%$ Lac 446 on $60-80$ mesh Chromosorb W column was used. Temperature was 200° and helium flow rate was $100 \mathrm{ml} / \mathrm{min}$.
(7) The PdCl_{2} plus CuCl_{2} reaction mixtures produced little, if any, saturated products. Contrast this with the results in the acetate reaction mixtures. ${ }^{2}$

[^0]: (1) Hercules Research Center Contribution No. 1578.
 (2) P. M. Henry and G. A. Ward, J. Amer. Chem. Soc., 93, 1494 (1971).
 (3) S. Wolfe and P. G. C. Campell, ibid., 93, 1497 (1971).

